25 Deduktív érvelés
egy példája a deduktív érvelésnek az, ha A B, és B C, akkor A jelentése C. Ebből a példából látható, hogy a deduktív érvelés azok, amelyek két következtetésen alapulnak. Ha a helyiségek helyesek, akkor a következtetés is helyes lesz.
Ebben az értelemben a deduktív érvelés helyiségei arra szolgálnak, hogy kellően igazságos és ellenőrizhető bizonyítékokat nyújtsanak a következtetés alátámasztására.

Esetenként a deduktív érvelés azt mutatja, hogy logikai folyamatot követtek. A helyiségek azonban nem szolgáltatnak bizonyítékot a következtetések hitelességére. Vegyük a következő példát:
Amikor hideg van, anyám a kedvenc sálat használja. Ma hideg van. Ezért anyám ma a kedvenc sálat viseli.
A következő indoklás helyes. Nem ismert azonban, hogy igaz-e, hogy "ma hideg". Ha a levonást kijelentő személy hazudik, akkor a következtetés csak helytelen.
A deduktív érvelés példáinak listája
Példák két helyiséggel és következtetés
A hagyományos deduktív érvelés követi a modellt "ha A B és B C, akkor A C". Ez azt jelenti, hogy két helyiségből és következtetésből állnak.
Az egyik hely általános, míg a másik pontosabb. Az elsőt egyetemes ajánlatnak nevezzük, a második pedig konkrét kijelentésnek.
Ezt szyllogizmusnak hívják, és Arisztotelész vezette be. A görög filozófus szerint ez a fajta érvelés a helyiségek magas szintű értékelését mutatja.
Az alábbiakban 20 ilyen típusú deduktív érvelés látható.
1-I előfeltétel: Minden ember halandó.
II. Előfeltétel: Arisztotelész ember.
Következtetés: Arisztotelész halandó.
2-Elhelyezés I: Minden téglalapnak négy oldala van.
Elhelyezés II: A négyzetek téglalapok.
Következtetés: A négyzeteknek négy oldala van.3
3-Elhelyezés I: Minden 0-ban vagy 5-ben végződő szám osztható 5-tel.
II. Előfeltétel: A 455-ös szám 5-ben ér véget.
Következtetés: A 455-ös szám osztható 5-tel.
4-Elhelyezés I: Minden madárnak tollai vannak.
II.
Következtetés: Az éjszakai szokásoknak tolluk van.
5-I. előfeltétel: A hüllők hidegvérű állatok.
Elhelyezés II: A kígyók hüllők.
Következtetés: A kígyók hidegvérű állatok.
6-Elhelyezés I: Minden sejt tartalmaz dezoxiribonukleinsavat.
II. Előfeltétel: sejtem van a testemben.
Következtetés: Deoxiribonukleinsav van.
7-Elhelyezés I: A vörös húsok vasban gazdagok.
II. Előkészítés: A steak vörös hús.
Következtetés: A steak vasban gazdag.
8-I. előfeltétel: Az emlősök táplálják a fiatalokat anyatejjel.
II. Előfeltétel: A delfinek emlősök.
Következtetés: A delfinek táplálják a fiatalokat az anyatejjel.
9-Elhelyezés I: A növények elvégzik a fotoszintézis folyamatát.
Elhelyezés II: A hortenzia növények.
Következtetés: A Hydrangeas fotoszintézist végez.
10-Elhelyezés I: A kétszikű növényeknek két sziklevele van.
II. Előfeltétel: A Magnolias kétoldalú.
Következtetés: A Magnoliasnak két sziklevele van.
11-Elhelyezés I: Minden autó legalább két ajtóval rendelkezik.
Elhelyezés II: A Prius egy autó.
Következtetés: A Prius legalább két ajtóval rendelkezik.
12-Elhelyezés I: A nemesgázok általában nem csoportosulnak más elemekkel.
II. Előfeltétel: A Xenon nemesgáz.
Következtetés: A xenont általában nem csoportosítják más elemekkel.
13-Elhelyezés I: A bab B-vitaminban gazdag.
II. Előkészítés: A lencse szemek.
Következtetés: A lencse B-vitaminban gazdag.
14-I előfeltétel: Amikor az embereknek influenza van, nazálisan beszélnek.
II. Előfeltétel: influenza van.
Következtetés: Az influenza miatt nazálisan beszélek.
15-I előfeltétel: A bolygók gömb alakúak.
II. Előfeltétel: A Mars egy bolygó.
Következtetés: A Mars gömb alakú.
16-I. előfeltétel: A csillagoknak saját fényük van.
II. Előfeltétel: A Nap egy csillag.
Következtetés: A Napnak saját fénye van.
18-I előfeltétel: A húgom csak akkor esik, amikor eső esik.
II. Előfeltétel: A húgom megnyitotta esernyőjét.
Következtetés: Szóval, esik az eső.
19-I. előfeltétel: Amikor János beteg, nem megy dolgozni.
II. Előírás: John ma beteg.
Következtetés: Ma János nem fog dolgozni.
20-Először I: A tanárom képes bármilyen szélszerszámot helyesen játszani.
II. Előfeltétel: A fuvola szélerőmű.
Következtetés: A tanárom jól tudja játszani a fuvolát.
Példák, amelyek nem felelnek meg a hagyományos modellnek
Néhány deduktív érvelés nem követi a syllogizmus modelljét. Ezekben az esetekben az egyik helyet kihagyják, mert úgy tűnik, hogy ez nyilvánvaló, vagy azt a nyilatkozat többi részéből lehet levonni. Ezért az ilyen típusú deduktív érvelés nehezebb felismerni.
Néhány példa erre az érvelésre:
1-A kutya egész nap ropogott rád, nem közeledik hozzá, vagy megharap.
Ebben az esetben azt a következtetést vonjuk le, hogy a kutya dühös, és ha dühös, akkor megharaphat.
Ezt a példát syllogizmusként lehet formázni, kiemelve a hiányzó helyiségeket. Az eredmény a következő:
I. előfeltétel: Amikor a kutyám dühös, megharaphat embereket.
II. Előfeltétel: Kutyám dühös veled.
Következtetés: Kutyám bármikor megharaphat.
2-Légy óvatos a méhekkel, meg tudnának tönkretenni.
A feltételezés az, hogy a méhek szúrnak.
3-Az alma a gravitáció hatása miatt esett.
Itt feltételezzük, hogy a beszélgetőpartner tudja, hogy a gravitáció vonzza a tárgyakat a Föld közepe felé.
4-Egy órát veszek, hogy a házamból az egyetemre menjek.
Ezért 7:30 órakor megérkezem. Ebben az esetben feltételezhető, hogy az érvelést javasoló személy 6: 30-kor elhagyja a házát..
5-Szükséges, hogy vegye ki a macskát, mielőtt elkezdené karcolni az ajtót.
Innen megértheted, hogy a macska karcolja az ajtót, amikor sétálni akar.
referenciák
- Duktív és induktív érvek. A 2017. október 6-án érkezett az iep.utm.edu-tól
- Duktív és induktív érvek. 2017 október 6-án, a lanecc.edu-tól szerezhető be
- Duktív és induktív érvek: Mi a különbség. A 2017. október 6-án, a thinkco.com-tól szerezhető be
- Deduktív érvek és érvényes érvelés. 2017 október 6-án került letöltésre a critthinkeracademy.com webhelyről
- Deduktív érvelés 2017 október 6-án, a wikipédiából, org
- A dedikáló érvek meghatározása és példái. A 2017. október 6-án, a thinkco.com-tól szerezhető be
- Mi a deduktív érv? A 2017. október 6-án a (z) whatis.techtarget.com webhelyről származik